15 research outputs found

    swMATH - a new information service for mathematical software

    Full text link
    An information service for mathematical software is presented. Publications and software are two closely connected facets of mathematical knowledge. This relation can be used to identify mathematical software and find relevant information about it. The approach and the state of the art of the information service are described here.Comment: see also: http://www.swmath.or

    New developments in the theory of Groebner bases and applications to formal verification

    Get PDF
    We present foundational work on standard bases over rings and on Boolean Groebner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Groebner basis in the polynomial ring over Z/2n while the bit-level model leads to Boolean Groebner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Groebner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.Comment: 44 pages, 8 figures, submitted to the Special Issue of the Journal of Pure and Applied Algebr

    Obtaining and solving systems of equations in key variables only for the small variants of AES

    Get PDF
    This work is devoted to attacking the small scale variants of the Advanced Encryption Standard (AES) via systems that contain only the initial key variables. To this end, we introduce a system of equations that naturally arises in the AES, and then eliminate all the intermediate variables via normal form reductions. The resulting system in key variables only is solved then. We also consider a possibility to apply our method in the meet-in-the-middle scenario especially with several plaintext/ciphertext pairs. We elaborate on the method further by looking for subsystems which contain fewer variables and are overdetermined, thus facilitating solving the large system

    Encoding Redundancy for Satisfaction-Driven Clause Learning

    Get PDF
    Satisfaction-Driven Clause Learning (SDCL) is a recent SAT solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems

    PolyBoRi: A framework for Gröbner basis computations with Boolean polynomials

    Get PDF
    AbstractThis work presents a new framework for Gröbner-basis computations with Boolean polynomials. Boolean polynomials can be modelled in a rather simple way, with both coefficients and degree per variable lying in {0,1}. The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations x2=x for each variable x. Therefore, the usual polynomial data structures seem not to be appropriate for fast Gröbner-basis computations. We introduce a specialised data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which are capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials. For example, a new useless-pair criterion for Gröbner-basis computations in Boolean rings is introduced. One of the motivations for our work is the growing importance of formal hardware and software verification based on Boolean expressions, which suffer–besides from the complexity of the problems –from the lack of an adequate treatment of arithmetic components. We are convinced that algebraic methods are more suited and we believe that our preliminary implementation shows that Gröbner-bases on specific data structures can be capable of handling problems of industrial size

    Obtaining and solving systems of equations in key variables only for the small variants of AES

    No full text
    This work is devoted to attacking the small scale variants of the Advanced Encryption Standard (AES) via systems that contain only the initial key variables. To this end, we introduce a system of equations that naturally arises in the AES, and then eliminate all the intermediate variables via normal form reductions. The resulting system in key variables only is solved then. We also consider a possibility to apply our method in the meet-in-the-middle scenario especially with several plaintext/ciphertext pairs. We elaborate on the method further by looking for subsystems which contain fewer variables and are overdetermined, thus facilitating solving the large system
    corecore